DESIGN-BUILD DELIVERY FOR NEW HAWAII STATE HOSPITAL

DESIGN-BUILD INSTITUTE OF AMERICA Western Pacific Region Friday, October 26, 2018 11:30 am – 1:00 pm Plaza Club, Honolulu, Hawaii

Featured Speakers

Eric Nishimoto

Project Manager HAWAII DEPARTMENT OF ADMINISTRATION AND GENERAL SERVICES

> **Katie MacNeil** Principal, AIA, LEED AP G70

SPONSORED BY: TITLE SPONSOR

AGENDA

• 11:30 am

• 12:00 pm-1:00 pm

Lunch

Program/Q&A

DBIA MISSION

 DBIA promotes the value of design-build project delivery and teaches the effective integration of design and construction services to ensure success for owners and design and construction practitioners.

DBIA VISION

• DBIA will be the industry's preeminent resource for leadership, education, objective expertise and best practices for the successful integrated delivery of capital projects.

DBIA INFORMATION & TRAINING

- The Design-Build Manual of Practice a 3 volume comprehensive reference manual for owners and practitioners and it is <u>free to DBIA</u> <u>members</u>
- **Designated Design-Build Professional Certification** intended to recognize acceptable standard of experience and knowledge in DB
- Online Learning provides 24/7 access to best practices and emerging trends in DB
- Educational Courses Fundamentals of project delivery; Principles of DB; Contracts and risk management; Post-award processes; Design management fundamentals

Information on membership available - see check-in table for brochure.

Potential DBIA CONTINUING EDUCATION CREDIT

ATTENTION ALL ATTENDEES:

Did you check in at the check in table?

- Be sure to check in <u>now</u> if you didn't when you arrived.
- No check in = No DBIA Continuing Education Credit

This program has <u>not</u> yet been approved for credits but is scheduled to be submitted. If DBIA National approves the request for continued education credit, the information will be posted on our website (*Education tab*). **If** approved, those that registered, attended and checked in (required) will receive the DBIA Continuing Education Credit.

- To qualify for the credit you must **check in (required)**.
- It is the responsibility of the attendee to maintain their own record of attendance.

Credit Certificate

- 1. After completion of check in go to the registration page online
- 2. Click "already registered"
- 3. Enter your email address and confirmation number, click "OK"
- 4. The DBIA Credit Certificate button will allow you to download and print your own certificate at your convenience.

DBIA YOUNG PROFESSIONALS

DBIA is committed to creating a clear path to success for emerging design-build professionals by providing a seamless transition from student engagement to industry involvement. In addition to deeply discounted membership (\$75), young professionals will enjoy the discounted member rate for all DBIA conferences and educational programs.

The YP program is designed to:

- Help Young Professionals build a community of peers;
- Provide a path to become DBIATM certified;
- Provide career building and leadership development; and
- Provide mentoring opportunities

You can join as an individual for \$75, or if you work for an IP Member, you can ask them to make you one of their two free YP members.

For further information regarding WPR Young Professionals please contact Matthew Backhaus at MBackhaus@henselphelps.com

DBIA-WPR CALL FOR VOLUNTEERS

The Western Pacific Region needs you!

Please let us know if you are interested participation on one or more of our volunteer committees. We welcome your participation.

- Legislative Committee
- Public Relations Committee
- Awards Committee
- Membership Committee
- Owners Council (must be a city, public agency or a project owner)
- Programs Committee
- Education Committee

- Golf Committee
- Water/Wastewater Committee
- Regional Conference
 Committee
- Young Professionals
 Committee
- And more on our website: www.dbiawpr.org

SAVE THE DATE (upcoming events)

- DBIA National Conference November 7-9, 2018- Ernest Morial Convention Center, New Orleans
- WPR Annual Membership Meeting November 29, 2018- Huntington Beach, CA (register via www.dbiaWPR.org)
- 2019 Certification Workshop
 April 18 to April 20, 2019 KYA Design Group office, Honolulu
- 2019 WPR Annual Regional Conference May 15-17, 2019 Napa, CA

2018 DBIA-WPR Board of Directors

Diane Anglin WPR President Clark Construction

Michael Moore WPR Senior Vice President City of Anaheim

Tracy Lyon WPR Vice President Coffman Engineers

Sean Carolan WPR Secretary Hensel Phelps

Chris Taylor WPR Treasurer Nevell Group

Mike Meredith WPR Owner's Council Director State of CA. Department of General Services

Dave Eichten WPR President Emeriti Pankow

Ofelia Alcantara Director California High Speed Rail Auth.

Aaron Alhady Sacramento Chapter Chair McCarthy Wylie Bearup Arizona Chapter Chair Arizona State Univ., & ACE

Ken Buck Director Roebbelen

Brian Coday Director CMI

Lee Conant Director davisREED

Joe Cvetas Director Southland Industries

Brandon Dekker Regional Conference Chair gkkworks

Bret Firebaugh DIrector Pankow

Rebekah Gladson President Emeriti Rggroup

Bob Hartung Director Alternative Delivery Solutions

Roger Johnson Director Dave Kirn Legislative Chair Kitchell

Eric Kisshauer President Emeriti New Normal Leadership Consulting

Praful Kulkarni President Emeriti gkkworks

Scott Loughridge Nevada Chapter Chair SR Construction

Damion Martin Bay Chapter Chair ACCO

Katie Mergen Young Professionals Chair AGC of California

Ron Migliori WPR President Emeriti Buehler & Buehler

Simin Naaseh Director Forell/Elesser Engineers, Inc.

Betty-Lynn Senes LA/OC Chapter Chair Sundt

Nancy Smith Director Nossaman LLP Rob Myer Interim Hawaii Chapter Chair Hensel Phelps

David Umstot President Emeriti Umstot Project & Facilities Solutions

William Vandrovec Director Kitchell

Marc Valls Education Chair Pankow

Barbara Wagner President Emeriti Clark Construction

Jacob Williams President Emeriti County of Los Angeles

Shelley Whitaker Director State of CA. Department of General Services

Visit us at www.DBIAwpr.org

Design-Build Institute of America Hawaii Chapter

Lunch Program October 26, 2018

DAGS Perspective and Briefing
On
Design-Build

Eric Nishimoto

Project Management Branch Chief

DAGS – Public Works Division

Discussion Topics:

- Why Design-Build
- Selection Process
- Design-Build Advantage or Disadvantage?
- Lessons Learned
- Hawaii State Hospital Update

- Typical Reasons You Hear:
 - Faster
 - Less cost
 - No change orders
 - Single point of responsibility for the <u>project</u>
 - Design-Builder knows how to design and construct your project. They
 have or are the experts and know best.
- Actual Reasons Why:
 - Pre-Qualified team of design professional and construction contractors
 - <u>Can allow</u> creativity of design and contractor to bring project in budget, on schedule and meet project owners needs/requirements
 - Early fixed price
 - Single point of contractual responsibility for the <u>design and</u> construction
 - Administrative initiative to use the Design-Build process

- Past and Current DAGS Projects
 - UH Special Events Arena (Stan Sheriff Center) -1991
 - Qualified team of design professional and construction contractors
 - Allowed creativity of design and contractor to bring project in budget, on schedule and meet the needs/requirements of UH Athletic Department
 - Early fixed price
 - Single point of responsibility for the design and construction
 - Fast
 - Nanakuli Elementary School 8-Classroom Building -1994
 - Princess Nahienaena Elementary School 8-Classroom Building -1994
 - Legislative mandate to do Design-Build pilot and report to the legislature

- Past and Current DAGS Projects Continued:
 - Hawaii Convention Center 1995
 - Qualified team of design professional and construction contractors
 - Allowed creativity of design and contractor to bring project in budget, on schedule and meet the needs/requirements of Convention Center Authority
 - Single point of responsibility for the design and construction
 - Faster
 - New Correctional Facility at Halawa (OCCC Replacement) 2002

(Proposal received and evaluated but did not proceed to award because it did not meet cost expectations)

- Design-Builder knows how to design and construct your project. They have or are experts
- Less cost It was promoted and believed that the State would not have to pay any more for both operating and CIP costs than it's current operating cost at the time due to efficient design of the new facility.
- No change orders
- Faster
- Single point of responsibility for the <u>Project</u>
- Various school roofs, painting, & renovation projects using the Performance Information Procurement System, a.k.a. "PIPS"
 - Performance based; quality for price paid

- Past and Current DAGS Projects Continued:
 - Keaukaha Military Reservation, Joint Military Center, Phase 1 2008
 - Federal funding required Design-Build
 - Early price commitment award to secure Federal Funding
 - Hawaii State Hospital, New Patient Facility On-going
 - Administrative initiative to do Design-Build with the schedule as a primary consideration
 - Project started in early 2015

Selection Process

- Many methods can be applied
 - UH Special Events Arena (Stan Sheriff Center) -1991
 - Qualified Shortlist
 - Award/selection to lowest cost per quality point if within the specified \$30,500,000 budget limit
 - If offer was over the budget limit, award/selection would be made to lowest price offered by any offeror deemed to have met or exceeded the technical design criteria
 - Nanakuli Elementary School 8 Classroom 1994
 - Princess Nahienaena Elem. School 8 Classroom 1994
 - Qualified Shortlist up to 6 Design-Build Teams
 - Qualification/Technical review: to determine if qualified to proceed to pricing
 - Pricing by Design-Build Teams deemed to have met or exceeded the technical design criteria
 - Award to lowest price offered

Selection Process

- Many methods
 - Hawaii Convention Center
 - Qualified shortlist up to 5 Design-Build teams
 - Technical Evaluation 75% of the total quality points
 - Design Evaluation 25% of the total quality points
 - Price set at \$200 million
 - New Correctional Facility at Halawa (OCCC Replacement)
 - No qualification step to shortlist
 - Technical Committee
 - Quality evaluation points
 - Executive Selection Board Evaluation in its relative importance of the following to determine the best or greatest value:
 - Findings from the Technical Committee
 - Price proposal
 - Ability to address environmental and community concerns

Selection Process

- Keaukaha Military Reservation, Joint Military Center, Phase 1
 - ☐ Qualification shortlist up to 5 Design-Build Teams by Evaluation Committee
 - □ Selection Committee:
 - Evaluation criteria points assigned, including price
 - Highest aggregate points recommended for award
- Hawaii State Hospital New Patient Facility
 - ☐ Qualification shortlist to 3 Design-Build Teams
 - Evaluation Committee evaluated factors and criteria, including price – points assigned:
 - Awarded to "best value" proposal Highest points

<u>Design-Build Advantage or Disadvantage?</u> (Relative to Design-Bid-Build/Low Bid)

- Faster
- Costs less
- Better product
- No change orders
- Control over design
- Qualifications based
- Creative design solution
- Administrative resources
- Single point of responsibility
- Price can be determined earlier

Lessons Learned

- If you put out a unrealistic solicitation, you may not get good competitive responses.
- Address each Design-Build project independently. Customize and don't standardize.
- Conduct adequate research and investigations to determine the requirements in an unambiguous manner.
- Know your costs. If your expectations are unrealistic for the budget amount, you may not get good competitive responses.
- Know your own limitations and be sure <u>appropriate</u> resources are available to do the Design-Build project. Design-Build requires significantly more resources than the Design-Bid-Build method.
- Contract time should be reasonable not just for the Design-Build Contractor, but also for you as the owner. Once you contract the Design-Build Contractor, you are also tied to that contract time.

Hawaii State Hospital Update

	Funds released							
	Project started							
	Program verification/update							
	Prepare RFP documents							
	 Scope, schedule & cost estimates 							
	 Project entitlements 							
	Environmental Impact Statement							
	Plan Review Use Application/Permit							
	Request for Proposals (Qualifications) advertisedApril 18, 2017							
-	Request for Proposals (Design proposal/price) releasedAugust 21, 2017							
	Proposals ReceivedNovember 8, 2017							
	Design-Builder selected/awardedJanuary 25, 2018							
	Contract Notice to ProceedFebruary 28, 2018							
	Contract completion dateJanuary 26, 2021							

Hawaii State Hospital Update

- Design-Build method has brought project within budget
- Design-Build contract amount: \$140 million
- No change orders to date
- Overall good design and expertise being brought forward by the Design-Build team.
- Design-Builder, Hawaii State Hospital, DAGS Consultants and DAGS have had some challenges, but have partnered well. Project is going well!

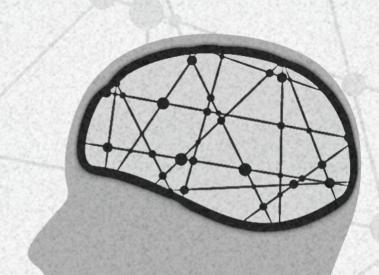
Questions & Answers

Eric K. Nishimoto

Project Management Branch Chief

DAGS Public Works Division

Ph. No. 586-0460


Email: eric.k.Nishimoto@Hawaii.gov

Brad Leveen
Project Coordinator
Project Management Branch
DAGS Public Works Division
Ph. No. 586-0473

Email: brad.leveen@Hawaii.gov

Design with Value – Built to Last – Delivered as Partners

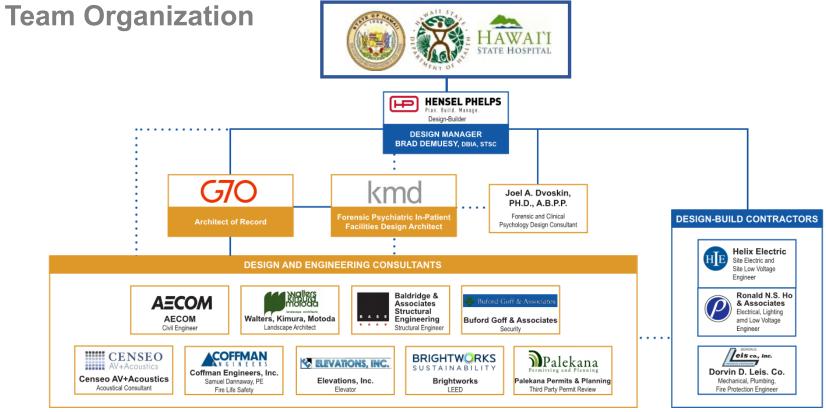
MAJOR THEMES

- Safety & Security
- Treatment vs Incarceration
- Hawaii Placemaking

OUR MISSION

An integrated team providing a state-of-the art forensic psychiatric facility for the State of Hawaii

Design with Value – Built to Last – Delivered as Partners


Design with Value – Built to Last – Delivered as Partners

Project Facts

144 Beds
High Risk Unit – 24 beds
Admission Unit – 24 beds
4 Patient Units – 4 x 24 beds
Rehabilitation Therapy Mall

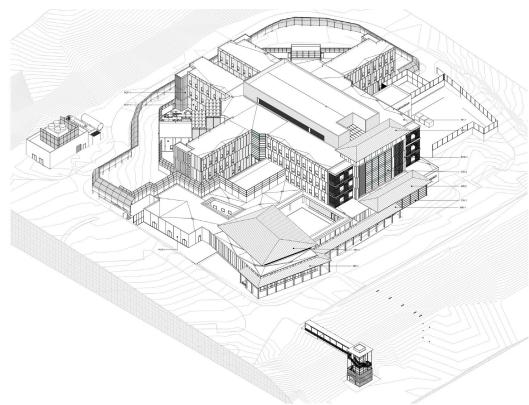
- > 190,000 GSF
- ~ 7 Acres
- > 255 Parking Stalls
- 4 stories
- 3 structures
 - New Patient Facility
 - Central Utility Plant
 - Site Elevator & Stairway

Contract and Design Coordination

· · · · Design Coordination

Team Communications

Weekly Design Meetings


Bi-Monthly OAC Meetings

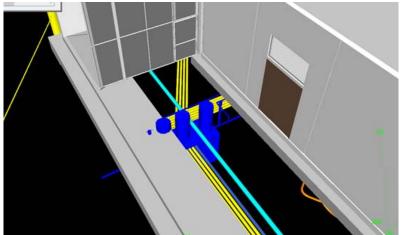
Monthly User Group Meetings

Project Shared Site: SharePoint

Building Information Management

BIM setup: Autodesk Revit 2018
Collaboration for Revit (C4R)
Autodesk Civil 3D 2016

CAD Software: Autodesk AutoCAD 2018


Coordination Software: Autodesk Navisworks 2018

Collaboration Software: Bluebeam Revu

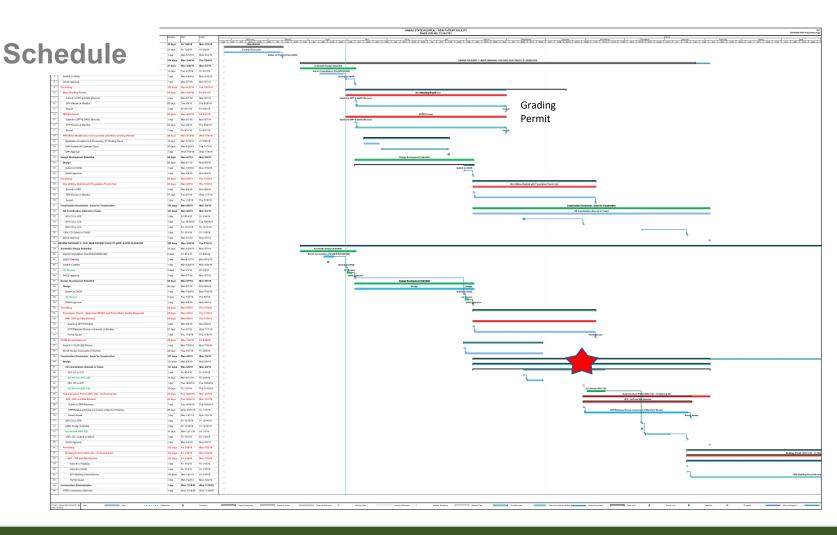
Bluebeam Studio (cloud-based

collaboration)

Project Shared Site: SharePoint

Sustainability

Hawaii State Hospital New Patient Facility


LEED-NC v4 Healthcare Scorecard Date: 10/8/2018

Goal: Silver

		16 4	1 65		Tota	I Project Score Continued 40	49 points Silver 50-59 points Gold 60	-79 points Plati	inum 80 or mor	re point							
LEAD	Yes	PV 1	N No			,			LEAD	Yes	2V 2	N No					_
GN TEAM		210	WZ	a.	Taken 7	Integrative Project Planning and Design		Required	LEND				Materi	als & Resource	·c	19 Points F	and a
		1	(4/2)	4.	OHELL	Integrative Process		1	G70/KMI	D Y	100	10/10	d Preside		ection of Recyclables	19 Foliits F	Fina
alt I EAR	1	•				integrative Process			HP		22.2		C Proves 2		Demolition Waste Mgmt. Planning		Req
	3	$\overline{}$	122			and Transportation	O Profe	nts Possible	G70/KM	V V	200	AH)	d record		duction: Mercury		Rec
	3	+	10			LEED for Neighborhood Development Location		nts Possible	HP		222 0	5	d over		cycle Impact Reduction		
BW	1	-	10		Desti 2	Sensitive Land Protection	Previously Developed	1	HP	-		1 1		Building Prod		Opt 1 -20 EP	
DVV	1		2		CHRES		Previously Developed	2	HP	-		1 1	C Oredit 2			Opt 2 -Respons, Extract	
			1		Codes	High Priority Site		2	HP	-		2	C Grade a		acts: Sourcing of Raw Materials	Opt 3 -Supply Chain Opti	
			2		CHEEK	Surrounding Density and Diverse Uses Access to Quality Transit		2	RNSHA	1		- 2	C Owner		acts: Material Ingredients	Opt 3 - suppry Chain Opti	,em.
			2				***	2		- 2		-			duction: Mercury		
I/G70	1			н.	OHES	Bicycle Facilities		1	HP	2			C Ower s		duction: Lead, Cadmium, Copper	_	
3W			1	-1-	Creft?	Reduced Parking Footprint Baseline	20% Reduction	1	KMD			2	d Owit?		Medical Furnishings		
AGS	1	_			CHEE	Green Vehicles		1	G70/KM	D		1	d owns	Design for Fle			
	_	-	_						HP		2		C Owden	Construction i	Demolition Waste Management	Divert 75% & 4 material st	rez
	5	1	3	Si	ustain	ible Sites	9 Poi	nts Possible		_							
HP.	Y	22		2 6	Protog 3	Construction Activity Pollution Prevention		Required			3	5		Environmenta		16 Points F	
W	Y	842		20	Parent 2	Environmental Site Assessment		Required	DL	Y	22/2		d rooq	Minimum IAC			Re
M/WKN	1			_ 4	Orditi	Site Assessment		1	G70/KMI	DY	822		d Premay 2	Environmenta	l Tobacco Smoke (ETS) Control		Re
/KM	1			_ 4	DHIZ	Site Development - Protect or Restore Habitat	On-site restoration	1	DL	2			d owics	Enhanced Ind	oor Air Quality Strategies		
WXV			1	_ d	01613	Open Space		1	TEAM/HI		1	2	C Oracle 2	Low-Emitting	Materials	Four Compliant Categor	ies
M/WKM		1			DHILL	Rainwater Management	95th Percentile	2	HP	1			C Owics	Construction	ndoor Air Quality Management Plan		
COM			1		OrditS	Heat Island Reduction		1	HP	2			C Oscit 4	Indoor Air Qu	ality Assessment	Air Testi	ing
ELIX	1			8	CHARG	Light Pollution Reduction	Site and building mounted lights	1	DL			1	d cents	Thermal Com	ort, Design & Control		
/KM	1			d	Codt7	Places of Respite		1	RNSH	1			d comes	Interior Lighti	ng (90% controls)		
/KM	1			.	Croid 8	Direct Exterior Access		1	BW		1	1	d Onit?	Daylight			
									BW/G70		1	1	d over	Quality Views		Perimeter area rec	175
	6	т	2 3	v	/ater E	fficiency	11 Poir	nts Possible	Censeo	2			d outs	Acoustic Perfe	rmance	Options 1 an	d2
	Y	08	480	0	Pieres 1	Outdoor Water Use Reduction, 30%		Required									
DL	Y	88		70	Farring 2	Indoor Water Use Reduction, 20%		Required		2	4	\top	Innova	tion & Design	Process	6 Points F	Pos
	Y	20		71	Parrieg 3	Building-Level Water Metering		Required	RNSH	1			d owns	Innovation	Purchasing- Lamps: Low Mercury Ligh	hting	
	1			1	Defit1	Outdoor Water Use Reduction, 50%		1	670		1		d owns	Innovation	Occupant Comfort Survey		
	4		1 2	1	OME2	Indoor Water Use Reduction, (35%) (40%-40%)	Reduced 35%	7	HP		1		C Owers	Pilot Credit	Verified C&D Recycling Rates		
	1			1	Defit 5	Cooling Tower Water Use	Max cycles up to 10	2	HP		1		C Ownto	Pilot Credit	Green Advantage Cert or Green Train	ring	
			1	1	CHEEK	Water Metering	Domestic Hot water, laundry machines	1	DL/RNSH		1		d owns	Pilot Credit	CCP Airborn Release or Enhanced Acc		_
		_					,		BW	1			d own:	LEED™ Accred	ited Professional		
	15	3	18	E	nerev	& Atmosphere	35 Pois	nts Possible									
HP	V	100	000		Parent 1	Fundamental Commissioning and Verification		Required		2	2	2	Region	al Credits		6 Points F) no
DL	Y	50	200	Я.	(burne)	Minimum Energy Performance	_	Required		1	9674		-	- zio code		0.7011127	-
DL	Y	20	200	8.	Parren 3	Building-Level Energy Metering		Required		1	3074	_	d owns		it: Outdoor Water Use Reduction	1 pt thresh	old
DL	Ý	90	40	м -	Promo d	Fundamental Refrigerant Management		Required		1		_	d over		it: Indoor water use reduction	3 pt thresh	
AGS	6	70.70	2727	4 -	CHEET.	Enhanced Commissioning	Eph. Cx + Monitor + Frv.	6		-	1		C OWEL		it: Construction and Demolition Waste I		
HP	8				Dodge?	Optimize Energy Performance New Const		20	_	-	1	-	d owns		it: Rainwater Management	1 of thresh	
	-				CHRES		neusoed 10%				-						
INSH		1				Advanced Energy Metering		1				1	d owns		it: Renewable Energy Production	1 pt thresh	
			2		Credit-4	Demand Response		2				1	Owit1	Regional Cred	it: Building Life-Cycle Impact Reduction	4 pt thresh	Ded.
			3		CHEES	Renewable Energy Production	***	3									
DL	1				Ordes	Enhanced Refrigerant Management											

Build	ling-level water metering
	FO
	Using the blank template tab, fill in the yellow highlighted cells with your
STEP	building's information
ONE	(See Example Water Meter Readings tab for example data).
STEP	Enter monthly meter readings in Column C (for kgal) or Column D (for m³).
TWO	While this example shows both units, only one is required.
STEP	Column G or H will automatically calculate daily average water use based on
THREE	data entered in Column C or D.
STEP	
FOUR	The graph to the right will populate as data is entered on a monthly basis.
STEP	
FIVE	Send your project's data to USGBC on a bi-annual basis through LEED Online.
	Share your project's data with USGBC for at least 5 years, per the prerequisite
STEP SIX	requirements.

End of 2020

MAHALO

OUR MISSION

An integrated team providing a state-of-the art forensic psychiatric facility for the State of Hawaii

Design with Value – Built to Last – Delivered as Partners

Design with Value – Built to Last – Delivered as Partners