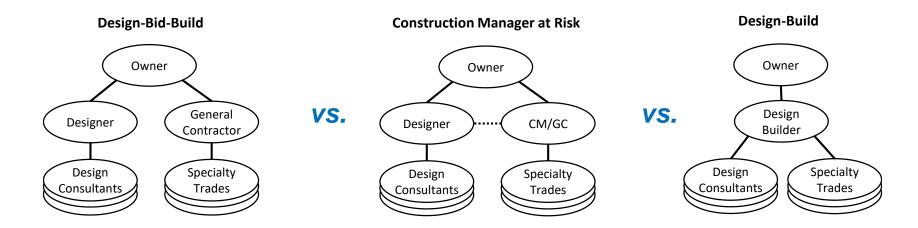


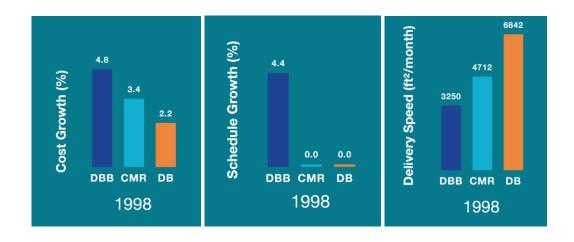
Maximizing Success in Integrated Projects

Keith Molenaar, Ph.D., Bryan Franz, Ph.D.



Learning Objectives

- Describe how today's project delivery systems perform with respect to cost and schedule
- Identify the variables that most influence cost and schedule performance
- Recognize the practices found on highly successful and poorly performing projects


Research Motivation

To improve owner decision-making by providing current benchmarks for *project delivery system* performance

1998 CII Benchmark

In 1998, the *CII* released a report comparing the performance of DBB, CMR and DB project delivery systems based on data from 351 projects:

20 Years of Change

Technological

change that enables more complex engineering, design and management

A focus on sustainability to improve building efficiency and reduce waste in the process

Organizational

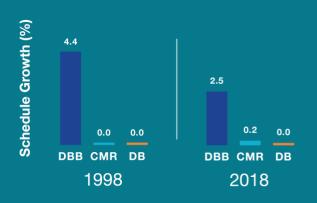
change that promotes collaboration across disciplines

2018 CII/Pankow Benchmark

Now, the CII and Charles Pankow Foundation sponsored a study to repeat the same comparison with a set of contemporary projects and answer the question:

Does the
Design-Build delivery
system still outperform
the alternatives?

Summary of Findings

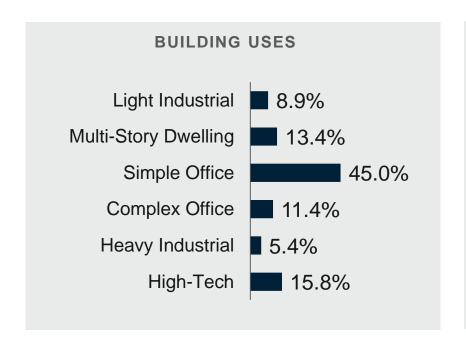

After 20 years...

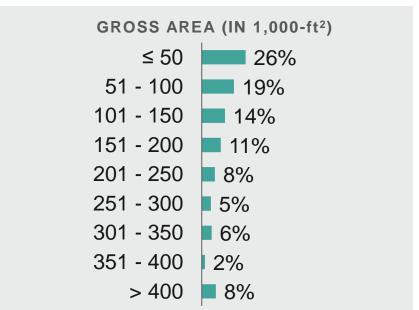
Summary of Findings

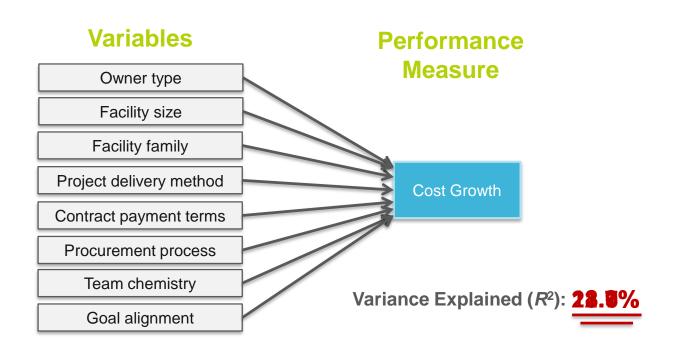
After 20 years...

Upon Deeper Analysis

After 20 years...


- The delivery speed of Design-Build projects has increased, relative to DBB and CMR projects
- Design-Build projects are still more reliable than DBB and CMR projects, in terms of cost and schedule growth
- On a per square-foot cost basis, Design-Build projects are equivalent to or slightly less than DBB and CMR projects


Project Data Set


62% Publicly Funded 78% Privately Funded

Project Data Set

Analysis Methods

Results: Average Cost Performance

Performance Measure	DB vs. CMR	CMR vs. DBB	DB vs. DBB	R ²
Unit Cost	1.9% less	1.6% more	0.3% less	99
Cost Growth	2.4% less	1.4% less	3.8% less	22

Results: Average Cost Performance

Lower unit costs were best explained by:

- Higher team chemistry among the Owner, designer and builder
- Open book contracting terms
- Lower initial contracted unit cost

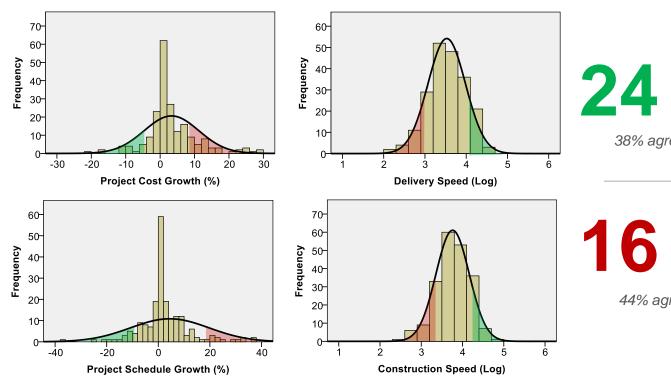
Lower **cost growth** was best explained by:

- Use of a DB delivery system
- Higher team chemistry among the Owner, designer and builder
- Smaller gross area
- Open book contracting terms
- Earlier involvement of the builder

Results: Average Schedule Performance

Performance Measure	DB vs. CMR	CMR vs. DBB	DB vs. DBB	R ²
Schedule Growth	3.9% less	2.2% more	1.7% less	21
Construction Speed	13% faster	20% faster	36% faster	88
Delivery Speed	61% faster	25% faster	102% faster	89

Results: Average Schedule Performance


Lower schedule growth was best explained by:

- Participation of the designer and builder in project goal-setting
- Early involvement of the builder
- Lower project complexity
- Private funding source
- Simpler foundation systems

Faster construction speed and delivery speed were best explained by:

- Use of a DB or CMR delivery system
- Larger gross area
- Higher initial contracted unit cost

Validation: Best and Worst Performers

Projects appeared in at least three of the best performing quartiles (*green* shaded areas)

38% agreed to a follow-on interview

Projects appeared in at least three of the worst performing quartiles (*red* shaded areas)

44% agreed to a follow-on interview

Results: Lessons Learned

The **best performing** projects differentiated themselves by:

Emphasizing a relational project culture: Owners issued early expectations to the team to not tolerate arguments, unprofessionalism or unfairness

Repeated relationships: Designer and/or builder often worked with the Owner on prior projects

Results: Lessons Learned

The **worst performing** projects were characterized by:

Lack of experience: First-time project managers or the Owner's first time working with the project delivery method

Poor communication: Breakdowns in communication leading to unrealistic expectations and delayed decision-making

Turnover in the team: Understaffing creating high work loads, stress and errors

Bringing Everything Together

After 20 years, DB projects are still delivered faster and with greater reliability in cost and schedule performance

In addition, the likelihood of project delivery success can be improved through:

- Assembling the project team early
- Developing
 a relational
 project culture
- Communicating expectations
- Engaging in succession planning

Where is Project Delivery Headed?

CURRENT

Challenge

The lines between project delivery methods are *continuing to blur*

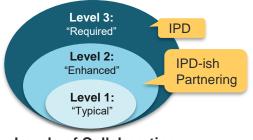
NEAR TERM

Transition

Owners need to consider *more than the project delivery method* itself

Qualification-based selection

Earlier involvement of participants



Cost transparency during execution

FUTURE

Response

The focus will be on developing project *teams* and ensuring their *integration*

Levels of Collaboration

Learning Objectives

- Describe how today's project delivery systems perform with respect to cost and schedule
- Identify the variables that most influence cost and schedule performance
- Recognize the practices found on highly successful and poorly performing projects

THANKS!

